Artificial_Intelligence_of_Things (AIoT)

Artificial Intelligence of Things (AIoT)

The Ouline

What’s AIoT?

The Artificial Intelligence of Things (AIoT) is the combination of artificial intelligence (AI) technologies with the Internet of Things (IoT) infrastructure to achieve more efficient IoT operations, improve human-machine interactions and enhance data management and analytics.

AIoT Hardware Architecture

This is the architecture of AIoT hardware. Here is a example of the specific equipment:

SI-61S-AI Industrial AI Computer

The SI-61S-AI is a highly scalable player with an artificial intelligence calculation analysis system developed for multi-screen video wall applications.
It is equipped with Intel’s latest 7th generation desktop processor and supports multiple players via one Matrox or AMD PCI-E (x8) graphics card, and perform artificial intelligence analysis through another NVIDIA GPU card for AI analysis.
High recognition rate from AI analysis will provide on-site personnel with accurate data for better management and judgment.

IoT and Data

  • Extension of IoT Applications(Consumer, industries, smart home, etc.)
  • Data Explosion(爆炸)
  • Artificial Intelligence of Things(IoT —> Big Data —> AI )

Data-driven AIoT

  • Data Sources
  • Data Processing and management
  • Application-based analytics
  • Application & sources

Data Processing and management

1. Data Collection

  • Filtering
  • Pre-processing
  • Storing
  • Ingestion(摄取)

2.1 Data Discovery

  • Data Fusion(数据融合,集成多个数据源)
  • Enrichment(使用模糊逻辑辅助搜索;获得相关的源地址信息;纠正拼写错误等)
  • Modeling(建模)
  • Indexing(标引)
  • Annotation(标注)

2.2 Data Analytics

  • Data Semantic(数据语义)
  • Meta-data Management(元数据管理)
  • Reasoning Contextual Data(上下文数据推理)

3. Data Protection

  • Anonymize(匿名化)
  • Data Masking(数据屏蔽,创建结构相似但不真实的数据版本,用以保护实际数据)
  • Data Transformation(数据转换,从一种格式或结构转换为另一种格式或结构的过程)
  • Sharing Control(共享控制)

###4. Data Publication

  • Publication(发表)
  • Open Data Sharing(开放的共享控制)
  • Personal Data Sharing(个人数据共享)
  • Visualization and Report(可视化报告)

AI-Based Deep Analysis

Decision Management(决策管理)

Discovery and Exploration(发现和探索)

Reporting and Analytics(报告和分析)

Predictive Analytics(预测分析)and Modelling

AI algorithms used in the field of data analysis


  • Linear regression(线性回归)
    举例:y = B0 + B1 * x 给定输入x,我们将预测y,线性回归学习算法的目标是找到系数B0和B1的值

  • Logistic Regression(逻辑回归)
    The prediction of the output is worth transforming using nonlinear functions called logical functions

  • Bayes Theorem(朴素贝叶斯)

  • KNN

  • Support Vector Machine

  • Random Forest

Trustworthiness in AIoT

// TODO,此处关于区块链,后续文章补充

Secure Decentralized Artificial Intelligence of Things (AI + Blockchain + IoT)

![]( Shot 2019-12-27 at 10.47.00 AM.png)